Jannik's Blog

GPT-4 T vs. 4o Mini vs. 3.5 T: Which LLM Works Best for Data Mapping?

LLMs can greatly speed up prototyping for tasks like extracting structured data from PDFs, normalizing it, and mapping it to predefined schemas. I recently tested three models from OpenAI for this purpose, evaluating accuracy, cost, and speed. Here’s a brief summary of my findings.

My Approach

  1. Data Extraction: Copy structured text directly from ERP-generated PDF offers (no OCR needed).
  2. Schema Validation: Use Zod to ensure data integrity.
  3. LLM-Powered Normalization & Mapping: Map product categories, identify brands, and extract key information.

To compare model performance, I set up a small test suite with different PDF documents, each containing various formatting styles, product descriptions, and pricing structures. This allowed me to systematically measure how well each model handled the same inputs across different scenarios.

Models Tested

Model OpenAI SDK Name Quality Speed (vs. GPT-3.5) Cost (vs. GPT-3.5)
GPT-4 Turbo gpt-4-0125-preview ✅✅✅ Best ~2x slower ~3x more expensive
GPT-4o Mini gpt-4o-mini ✅ Decent ~1.5x slower ~2x more expensive
GPT-3.5 Turbo gpt-3.5-turbo-0125 ✅ Decent Fastest (Baseline) Cheapest

Prototypical Setup in TypeScript

A simple setup for sending structured data to OpenAI’s API and normalizing it with Zod:

import { OpenAI } from "openai";
import { z } from "zod";

const openai = new OpenAI({ apiKey: process.env.OPENAI_API_KEY });

const productSchema = z.object({
  name: z.string(),
  brand: z.string().optional(),
  category: z.string(),
  price: z.number(),
});

async function normalizeProductData(text: string) {
  const response = await openai.chat.completions.create({
    model: "gpt-4-0125-preview",
    messages: [{ role: "system", content: "Extract structured product data from this text." }, { role: "user", content: text }],
  });

  const rawData = JSON.parse(response.choices[0].message.content || "{}");
  return productSchema.parse(rawData);
}

// Example usage
normalizeProductData("Trek Domane SL 6, Carbon Road Bike, 3499€").then(console.log).catch(console.error);

Key Takeaways

My Recommendation

For fast and cost-efficient prototyping, use GPT-3.5 and fall back to GPT-4 Turbo only when necessary (e.g., for ambiguous mappings). If cost is less of a concern, go directly with GPT-4 Turbo for the best accuracy.